Application of satellite remote sensing in natural hazard management: the Mount Mangart landslide case study

dr. Krištof Oštir, Tatjana Veljanovski, dr. Tomaž Podobnikar and dr. Zoran Stančič Scientific Research Centre of the Slovenian Academy of Sciences and Arts

Contents

- Introduction
- Charter Space and Major Disasters
- Remote sensing and image processing
- Landslide area analysis
- Conclusions

Introduction

- Mount Mangart landslide
- First landslide on 15 November 2000
- Liquefaction
- Second landslide in the night from 16 to 17 November 2000
- Travelling velocity 8 to 15 m/s
- Approximately 3.000.000 m³ of material moved
- Seven people died
- Immense damage
 - bridges, roads
 - changed countryside

Introduction (3)

Space and Major Disasters

- UNISPACE III conference in July 1999
- Charter started in October 2000 by
 - European Space Agency (ESA)
 - Canadian Space Agency (CSA)
 - Centre National d'Etudes Spatiales (CNES)
- Joined later
 - National Oceanic and Atmospheric Administration (NOAA)
 - Indian Space Research Organization (ISRO)
 - Argentine Space Agency (CONAE)
 - Japan Aerospace Exploration Agency (JAXA)
- The Mount Mangart landslide is the first time it was activated
- 80 actions in five years

Space and Major Disasters (2)

Remote sensing

- Acquisition plan
 - SPOT and RADARSAT observed western Slovenia for several weeks
- 13 satellite images were used in total (8 obtained in the frame of the Charter)
 - 5 ERS (1 and 2),
 - 2 RADARSAT,
 - 4 SPOT, and
 - 2 Landsat
- As an additional layer a digital elevation model InSAR DEM 25 was used

Satellite images used

Agency	Satellite	Туре	Acq. date	Acq. time	Received
ESA	ERS	radar	1999-11-05	9:56	2000-11-30
ESA	ERS	radar	2000-11-24	9:56	2000-11-30
CSA	RADARSAT	radar	1998-10-25	17:02	2000-12-13
CSA	RADARSAT	radar	2000-12-01	17:02	2000-12-13
CNES	SPOT	optical	2000-08-19	10:08	2000-12-14
CNES	SPOT	optical	2000-08-21	10:08	2000-12-14
CNES	SPOT	optical	2000-11-29	9:58	2000-12-14
CNES	SPOT	optical	2000-11-29	10:11	2000-12-14
ESA	ERS	radar	1998-03-20	9:56	before
ESA	ERS	radar	1998-04-24	9:56	before
ESA	ERS	radar	1998-05-29	9:56	before
ESA	Landsat	optical	1992-08-18	9:14	before
ESA	Landsat	optical	1999-09-15	9:14	before

Landslide analysis

- Visual interpretation is important in landslide monitoring and rescue operations
- Landslide was observed, directly or indirectly, on images acquired after the event
- Satellite images are an important source of information for GIS analyses

Landslide analysis (2)

- Landslide and impact areas were delineated on images acquired by SPOT after the event (29 November 2000)
- Estimated area of the landslide is 25.7 ha
- The landslide travelled several kilometres
- The area of additional destruction in the valley is 50.1 ha
- The total area is 75.8 ha

Digital elevation model

- InSAR DEM 25 produced with radar interferometry
 - ERS-1 and 2 images were used
 - tandem mode
 - advanced interferogram combination
 - external DEM modelling
 - ascending and descending orbit
 - vertical accuracy of 8 m was achieved
 - in plains better than 2 m
 - in mountains 10 m or more

Digital elevation model (4)

 Landslide analysis regarding elevations, slope and orientation

		Landslide	Impact area
Elevation	Average	1386	824
(m)	Std. dev.	109	243
Slope	Average	24	19
(%)	Std. dev.	6	12
Orientation	Average	161	224
(deg.)	Std. dev.	25	83

Land cover

- SPOT and Landsat
- Advanced supervised classification
 - DEM modelling
 - forest mixing
- 10 classes
 - urban, build up, individual houses,
 - coniferous, deciduous, mixed forest, bushes,
 - water,
 - agriculture, and
 - open
- Estimated attribute accuracy is 90%

Land cover (3)

Conclusions

- The possibilities of remote sensing and geographical information systems in natural hazard observation are shown
- Combination of images
 - optical (land cover, area delineation)
 - radar (humidity, digital elevation model)
- SPOT imagery was most useful

Conclusions (2)

- The total destroyed area is 76 ha
 - 26 ha landslide
 - 50 ha impact area
- Steep and rather homogenous landslide area
- Much lower and heterogeneous impact area
- Mostly covered with forests, but also a considerable amount of agricultural and urban areas

Conclusions (3)

Charter Space and Major Disasters

- proved to be very useful
- images used in rescue operations and (mostly) damage estimation
- faster image delivery is urgent, direct transfer is preferred
- more user influence in image acquisition plan is desired

The results of the research are available on www.zrc-sazu.si/pic/www.disasterscharter.org

Acknowledgements
European Space Agency (ESA)
Canadian Space Agency (CSA)
Centre National d'Etudes Spatiales (CNES)
Prof. dr. Bojan Majes