DEM from various data sources and geomorphic details enhancement Tomaž Podobnikar Bohinj 2006 – 5th ICA Mountain Cartography Workshop 31 March 2006

Contents

- 1 Introduction
- 2 DEM from different sources
- 3 Visualisation of DEM
- 4 Conclusions

Motivation

- DEM is one of the most important data sources (for cartography, effective GIS analyses...)
- for effective visualisation overall high quality DEM is required
 - higher quality
 - removing gross errors
- some visualization methods that emphases the exposition of geomorphologic details are presented
- DEM production method of data fusion of different quality is proposed
 - weighted sum
 - geomorphologic enhancement

Demands for DEM

- high quality DEM production is very expensive (data acquisition!)
 ←→ users demand high quality
- mixture of science and art
 deep understanding of the landscape and required model

Demands for DEM - how?

- economical way
 - feasibility for easy DEM 'upgrade' up-to-date
 - secondary products (improved and new databases, analogue maps)
 - optimal cost of production
- fusion (combination, integration) data sources
 - existing data
 - various quality and type data
 - no additional data acquisition
- increasing quality
 - elimination of gross and systematic errors in data sources
 - consideration of data sources regarding their quality (numerical/statistical and visual/geomorphological criteria)

Hypothesis

- with appropriate approach is possible to expose the best properties of existing data sources and integrate them into model that is overall better than particular data sources
 - garbage into the model, high quality data out!!!

4 phases of DEM production

- preparation for DEM processing
- pre-processing of data sources
- processing DEM from data sources
- evaluation of DEM

Errors on data sources

- evaluation of data sources, error detection and elimination
 - visual reference data [– gross errors]
 - statistical reference points [– gross errors]
 - statistical continuous data [– systematic, gross errors]

Potential gross error of DEM 25 – bridge!?

Points - stat. elimination

Weighted sum

weighted "parallel" sum of data sources (map algebra)

- combining more data layers (DEMs that are differently interpolated or combining different data sources)
- weights of particular data layers $u_o = \frac{1}{\sigma_o^2}$, $u_i = \frac{1}{\sigma_i^2}$ calculating *H* regarding weights

Geomorphological correc.

geomorphological corrections after weighted sum

- reconstr. of the geomorphological charact. of weighted layer regarding better among both
- low pass filter → trend surfaces
- to trend surfaces of weighted layer is added difference between value of better layer and belonging trend

Result of data fusion for DEM production

- visual & geomorphological homogenous DEM
- statistically accurate and precise DEM
- applied methodology is useful for further improvement of DEM with new sources
- quality of DEM is evaluated for every data element
- portion of every data source used for DEM is known
- data sources are improved and corrected

RA predominate data sources

RV potential errors

Selected methods for topographic maps visual.

- contours
 - particular elevations
- hypsometrical
 - regarding elevations
- bipolar differentiation
 - relative intervals of hypsometry between the contours
- enhancing of the edges
 - increasing contrast similar to worn out edges
- hill shading
 - similar to natural sun lighting

Combination of the methods

- better impact for
 - realism
 - precision/accuracy
 - understanding of the landform
 - multi scale

hill shading (two different horiz. angles and scales

combination: hill shading + enhanced edges

bipolar differentiation 20 m interval

bipolar differentiation 100 m interval

hill shading + enhanced edges + bipolar different. (B&W)

hill shading + enhanced edges + bipolar different.

hill shading + enhanced edges + bipolar different. + hypsometry

hill shading + enhanced edges + bipolar different. + hypsometry

hill shading + enhanced edges + bipolar different. + hypsometry

hill shading + enhanced edges + bipolar different.

hill shading + enhanced edges + (light) bipolar different. + hypsometry

hill shading + enhanced edges + B&W bipolar different. + hypsometry

hill shading + enhanced edges + (B&W) bipolar different. + hypsometry

hill shading + enhanced edges + (B&W) bipolar different. + hypsometry

hill shading + enhanced edges + (B&W) bipolar different. + hypsometry

hill shading + enhanced edges + (B&W light) bipolar different. + hypsometry

hill shading + enhanced edges

Some more examples

- different techniques for
 - different geomorphology
 - understanding the nature of landscape

DEM 12.5GU – map

Conclusions

- multi scale visualisation techniques
- better understanding of the lanscape
- the DEM should look reasonable!
- It is not enough to produce the best DEM on the world if users:
 - can not find it
 - do not know possible purposes of use, its quality...

